
Network Interchange for Neuroscience
Modeling Language (NineML) version

1.1
Release 1

The NineML Committee

Feb 05, 2018

Contents

1 About 1
1.1 NineML Committee . 1
1.2 Licence . 1
1.3 Website . 1

2 Introduction 3
2.1 Scope . 3
2.2 Design considerations . 4
2.3 Identifiers . 4

3 General Elements 5
3.1 Document Layout . 5
3.2 Units and Dimensions . 6
3.3 Annotating Elements . 8

4 Abstraction Layer 9
4.1 Component Classes and Parameters . 9
4.2 Mathematical Expressions . 11
4.3 Ports . 14
4.4 Dynamic Regimes . 16
4.5 Transitions . 19
4.6 Random Distributions . 22
4.7 Network Connectivity . 23

5 User Layer 25
5.1 Components and Properties . 25
5.2 Values . 28
5.3 Populations . 30
5.4 Projections . 31
5.5 Selections: combining populations and subsets . 35

6 Serialization 37

7 Examples 43
7.1 Single Cell Models . 43
7.2 Network Models . 48

i

8 Acknowledgments 53

Bibliography 55

ii

CHAPTER 1

About

The NineML specification is edited by the NineML Committee.

1.1 NineML Committee

• Thomas G. Close

• Alexander J. Cope

• Andrew P. Davison

• Jochen M. Eppler

• Erik De Schutter

• Ivan Raikov

• Paul Richmond

1.2 Licence

This document is under the Common Creative license BY-NC-SA: http://creativecommons.org/licenses/by-nc-sa/3.0/

1.3 Website

See http://nineml.net for more information on the committee and NineML developments.

Last Updated: Feb 05, 2018

1

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://nineml.net

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

2 Chapter 1. About

CHAPTER 2

Introduction

The increasing diversity of neuronal network models and the software/hardware platforms used to simulate them
presents a significant challenge for sharing, replicability and reusability of models in computational neuroscience. To
address this problem, we propose a common description language, Network Interchange for Neuroscience Modeling
Language (NineML), to facilitate the exchange neuronal network models between researchers and simulator platforms.

NineML is based on a common object model describing the different elements of neuronal network models. It was ini-
tiated and supported by the International Neuroinformatics Coordinating Facility (INCF) (http://www.incf.org) as part
of the Multiscale Modeling Program, and has benefitted from wide-ranging input from computational neuroscientists,
simulator developers and developers of simulator-independent languages (e.g. NeuroML, PyNN) (see Acknowledge-
ments) [Goddard2001], [Gleeson2010], [Davison2008].

2.1 Scope

The purpose of NineML is to provide a computer language for succinct and unambiguous description of computational
neuroscience models of neuronal networks. NineML is intended to describe the network architecture, parameters and
equations that govern the dynamics of a neuronal network, without taking into account model implementation details
such as numerical integration methods.

The following neuronal network objects can be described in NineML,

1. spiking and non-spiking neurons

2. synapses

(a) Post-synaptic membrane current mechanisms

(b) Short-term synaptic dynamics (depression, facilitation)

(c) Long-term synaptic modifications (STDP, learning, etc.)

(d) Gap-junctions

3. populations of neurons

4. synaptic projections between populations of neurons

3

http://www.incf.org
https://www.incf.org/activities/our-programs/modeling/people

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

2.2 Design considerations

As one of the goals of NineML is to provide a means to exchange models between simulator platforms, it is important
to maintain a clear distinction between the role of NineML and the role of a simulator. Therefore, NineML only con-
tains the necessary information to describe the model not how to simulate it, although suggestions can be supplied in
annotations to the model (see [sec:Annotations_Section]). For example, NineML should specify the neuron membrane
equation to solve, but not how to solve it. In addition, for implementation and performance reasons, it is important
to keep the language layer “close” to the simulator – such that the language layer is not responsible for maintaining
separate representations of all the instantiated elements in the network.

A NineML object model representation can take multiple forms. A program can employ a concrete representation
of the NineML objects in a specific programming language, convert an internal model representation to and from
hierarchical data formats (see Serialization), or use code generation to produce a model representation for a target
simulation environment.

The design of NineML is divided into two semantic layers:

1. An Abstraction Layer that provides the core concepts and mathematical descriptions with which model vari-
ables and state update rules are explicitly described in parametrized form, and

2. A User Layer that provides a syntax to specify the instantiation and the value of parameters of all these com-
ponents of a network model.

Since the User Layer provides the instantiation and parametrization of model elements that have been defined in the
Abstraction Layer, the two layers should share a complementary and compatible design philosophy. Which aspects of
a model are defined in the Abtraction Layer and which are in the User Layer Layer are clearly defined (each element
type belongs to only one layer with the exception of units and dimensions). In order to simplify their interpretation
and maintain compatibility with a wide range of data formats (e.g. JSON, Python objects), NineML documents are
not sensitive to the order that objects appear in.

2.3 Identifiers

Elements are identified by names, which are unique in the scope they are enclosed by (either within a component class
or in the document scope of the file). For a name to be a valid NineML identifier, it must meet the requirements for a
ANSI C89 identifiers. Additionally, identifiers are not permitted to begin or end with an underscore character (i.e. ‘_’)
to allow special variables to be defined in the same scope as identified variables/objects in generated code.

NineML identifiers are case-sensitive in the sense that they must be referred to with the same case as they are defined.
However, two identifiers that are identical with the exception of case, e.g. ‘v_threshold’ and ‘v_Threshold’, are not
permitted within the same scope. Identifiers used within component classes also cannot be the same (case-insensitive)
as one of the built-in symbols or functions (see MathInline).

4 Chapter 2. Introduction

http://msdn.microsoft.com/en-us/library/e7f8y25b.aspx

CHAPTER 3

General Elements

3.1 Document Layout

NineML documents must be enclosed within an NineML element, which should be in the ’http://nineml.net/9ML/1.0’
namespace.

3.1.1 NineML

Attribute Type/Format Required
namespace (i.e. xmlns in XML) ‘http://nineml.net/9ML/1.0’ yes

Children Multiplicity Required
Component set no
ComponentClass set no
Unit set no
Dimension set no
Population set no
Projection set no
Selection set no

Seven document-level elements are allowed to reside directly within NineML elements: Component, ComponentClass,
Unit, Dimension, Population, Projection and Selection. Each element should be uniquely identified by its name
attribute within the scope of the document (see).

Unit and Dimension elements must be defined within the document they are referenced, whereas the remaining element
types can also be referenced from other NineML documents (see Reference and Definition).

5

http://nineml.net/9ML/1.0
http://nineml.net/9ML/1.0

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Namespace attribute

The namespace attribute (xmlns in XML) is required and should refer to the URL corresponding to the correct NineML
version, which for version 1.0 is ‘http://nineml.net/9ML/1.0’ (see http://www.w3.org/TR/REC-xml-names/).

3.2 Units and Dimensions

Dimensions are associated with parameters, analog ports and state variables in component class definitions. Each
dimension can give rise to a family of unit declarations, each of which has the same dimensionality but a different
multiplier. For example, typical units for a quantity with dimensionality voltage include millivolts (multiplier = 10−3),
microvolts (multiplier = 10−6) and volts (multiplier = 1). To express a dimensional quantity both a numerical factor
and a unit are required.

Except where physical constants are required, abstraction layer definitions generally only contain references to dimen-
sions and are independent of any particular choice of units. Conversely, the user layer only refers to units. Internally,
dimensional quantities are to be understood as rich types with a numerical factor and exponents for each of the base
dimensions. They are independent of the particular choice of units by which they are assigned.

Note: The format for units and dimensions is the same as is used for LEMS/NeuroML v2.0 (http://www.neuroml.org)
[Cannon2014].

3.2.1 Dimension

Attribute Type/Format Required
name identifier yes
m integer no
l integer no
t integer no
i integer no
n integer no
k integer no
j integer no

Dimension objects are constructed values from the powers for each of the seven SI base units: length (l), mass (m), time
(t), electric current (i), temperature (k), luminous intensity (l) and amount of substance (n). For example, acceleration
has dimension 𝑙𝑡−2 and voltage is 𝑚𝑙2𝑡3𝑖−1. Dimension objects must be declared in the top-level scope of the NineML
document where they are referenced.

Name attribute

Each Dimension requires a name attribute, which should be a valid and uniquely identify the Dimension in current the
scope.

M attribute

The m attribute specifies the power of the mass dimension in the Dimension. If omitted the power is zero.

6 Chapter 3. General Elements

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://nineml.net/9ML/1.0
http://www.w3.org/TR/REC-xml-names/
http://www.neuroml.org

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

L attribute

The l attribute specifies the power of the length dimension in the Dimension. If omitted the power is zero.

T attribute

The t attribute specifies the power of the time dimension in the Dimension. If omitted the power is zero.

I attribute

The i attribute specifies the power of the current dimension in the Dimension. If omitted the power is zero.

N attribute

The n attribute specifies the power of the amount-of-substance dimension in the Dimension. If omitted the power is
zero.

K attribute

The k attribute specifies the power of the temperature dimension in the Dimension. If omitted the power is zero.

J attribute

The j attribute specifies the power of the luminous-intensity dimension in the Dimension. If omitted the power is zero.

3.2.2 Unit

Attribute Type/Format Required
symbol string yes
dimension Dimension.name yes
power integer no
offset integer no

Unit objects specify the dimension multiplier and the offset of a unit with respect to a defined Dimension object. Unit
objects must be declared in the top-level scope of the NineML documents where they are referenced.

Symbol attribute

Each Unit requires a symbol attribute, which should be a valid and uniquely identify the Unit in current the scope.

Dimension attribute

Each Unit requires a dimension attribute. This attribute specifies the dimension of the units and should refer to the
name of a Dimension element in the document scope.

3.2. Units and Dimensions 7

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Power attribute

Each Unit requires a power attribute. This attribute specifies the relative scale of the units compared to the equivalent
SI units in powers of ten. If omitted the power is zero.

Offset attribute

A Unit can optionally have an offset attribute. This attribute specifies the zero offset of the unit scale. For example,

<Unit name="degC" dimension="temperature" power="0" offset="273.15"/>

If omitted, the offset is zero.

3.3 Annotating Elements

Annotations are provided to add semantic information about the model, preserving structure that is lost during conver-
sion from an extended format to core NineML, and provide suggestions for the simulation of the model. It is highly
recommended to add references to all publications on which the model or property values are based in the annotations.
For adding semantic structure to the model it is recommended to use the Resource Description Framework (RDF)
although it is not a strict requirement.

In order to be compliant with the NineML specification any tool handling NineML descriptions must preserve all
existing annotations, except where a user explicitly edits/deletes them. In future versions of this section will be
expanded to include suggested formats for commonly used annotations.

3.3.1 Annotations

Children Multiplicity Required
* set no

The Annotations element is the top-level of the annotations attached to a NineML element. They can be included
at the top level of a document and within any NineML element (User Layer or Abstraction Layer), and may contain
any object hierarchy that can be serialized to valid XML (although other hierarchical formats are supported, see
Serialization).

8 Chapter 3. General Elements

http://www.w3.org/RDF/

CHAPTER 4

Abstraction Layer

4.1 Component Classes and Parameters

The main building block of the Abstraction Layer is the ComponentClass. The ComponentClass is intended to package
together a collection of objects that relate to the definition of a model (e.g. cells, synapses, synaptic plasticity rules,
random spike trains, inputs). All equations and event declarations that are part of particular entity model, such as
neuron model, belong in a single ComponentClass. A ComponentClass can be used to represent either a specific
model of a neuron or a composite model, including synaptic mechanisms.

The interface is the external view of the ComponentClass that defines what inputs and outputs the component exposes
to other ComponentClass elements and the parameters that can be set for the ComponentClass. The interface consists
of instances of ports and Parameter (see [fig:component_class_overview]).

As well as being able to specify the communication of continuous values, ComponentClass elements are also able to
specify the emission and the reception of events. Events are discrete notifications that are transmitted over event ports.
Since Event ports have names, saying that we transmit ‘event1’ for example would mean transmitting an event on the
EventPort called ‘event1’. Events can be used for example to signal action potential firing.

4.1.1 ComponentClass

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
Parameter set no
AnalogSendPort set no
AnalogReceivePort set no
AnalogReducePort set no
EventSendPort set no
EventReceivePort set no
[Dynamics,ConnectionRule,RandomDistribution] singleton yes

9

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

analog_input1

analog_output1
analog_output2

parameter1

parameter2

parameter3

ComponentClass

Dynamics Interface

Fig. 4.1: ComponentClass Overview

A ComponentClass is composed of:

• Parameter objects for the ComponentClass, which specify which values are required to be provided in the User
Layer.

• An unordered collection of port objects, which either publish or read state variables or derived values published
from other components in the case of analog send and receive ports, or emit events or listen for events emitted
from components. EventSendPort and EventReceivePort objects raise and listen for events passed between
dynamic components.

• A ‘main’ block, which specifies the nature of the component class:

– Dynamics, the component class defines a dynamic element such as neutron or post-synaptic response.

– ConnectionRule, the component class defines a rule by which populations are connected in projections.

– RandomDistribution, the component class defines random distribution.

Name attribute

Each ComponentClass requires a name attribute, which should be a valid and uniquely identify the ComponentClass
in the document scope.

10 Chapter 4. Abstraction Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

4.1.2 Parameter

Attribute Type/Format Required
name identifier yes
dimension Dimension.name yes

Parameter objects are placeholders for numerical values within a ComponentClass. They define particular qualities
of the model, such as the firing threshold, reset voltage or the decay time constant of a synapse model. By definition,
Parameters are set at the start of the simulation, and remain constant throughout.

Name attribute

Each Parameter requires a name attribute, which is a valid and uniquely identifies the Parameter within the Compo-
nentClass.

Dimension attribute

Parameter elements must have a dimension attribute. This attribute specifies the dimension of the units of the quantity
that is expected to be passed to the Parameter and should refer to the name of a Dimension element in the document
scope. For a dimensionless parameters a Dimension with all attributes of power 0 can be used.

4.2 Mathematical Expressions

As of NineML version 1.0, only inline mathematical expressions, which have similar syntax to the ANSI C89 standard,
are supported. In future versions it is envisaged that inline expressions will be either augmented or replaced with
MathML (http://mathml.org) expressions.

4.2.1 MathInline

Body format Required
Inline-maths expression yes

MathInline blocks are used to specify mathematical expressions. Depending on the context, MathInline blocks should
return an expression that evaluates to either a bool (when used as the trigger for OnCondition objects) or a real number
(when used as a right-hand-side for Alias, TimeDerivative and StateAssignment objects). All numbers/variables in
inline maths expressions are assumed to be real numbers.

Body

The following arithmetic operators are supported in all inline maths expressions and have the same interpretation and
precedence levels as in the ANSI C89 standard,

• Addition +

• Subtraction -

• Division /

• Multiplication *

4.2. Mathematical Expressions 11

http://mathml.org

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

The following inequality and logical operators are only supported in inline maths expressions within Trigger elements.
They also have the same interpretation and precedence levels as in ANSI C89 standard.

• Greater than >

• Lesser than <

• Logical And: &&

• Logical Or: ||

• Logical Not: !

The following functions are built in and are defined as per ANSI C89:

• exp(x)

• sin(x)

• cos(x)

• log(x)

• log10(x)

• pow(x, p)

• sinh(x)

• cosh(x)

• tanh(x)

• sqrt(x)

• atan(x)

• asin(x)

• acos(x)

• asinh(x)

• acosh(x)

• atanh(x)

• atan2(x)

The following symbols are built in, and cannot be redefined,

• pi

• t

where 𝑝𝑖 is the mathematical constant 𝜋, and 𝑡 is the elapsed simulation time within a Dynamics block.

The following random distributions are available in StateAssignment elements via the random namespace, :

• random.uniform (see http://uncertml.org/distributions/uniform)

• random.normal (see http://uncertml.org/distributions/normal)

• random.binomial(N,P) (see http://uncertml.org/distributions/binomial)

• random.poisson(L) (see http://uncertml.org/distributions/poisson)

• random.exponential(L) (see http://uncertml.org/distributions/exponential)

12 Chapter 4. Abstraction Layer

http://uncertml.org/distributions/uniform
http://uncertml.org/distributions/normal
http://uncertml.org/distributions/binomial
http://uncertml.org/distributions/poisson
http://uncertml.org/distributions/exponential

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

4.2.2 Alias

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
MathInline singleton yes

An alias corresponds to an alternative name for a variable or part of an expression.

Aliases are motivated by two use cases:

• substitution: rather than writing long expressions for functions of state variables, we can split the expressions
into a chain of Alias objects, e.g.:

m_alpha = (alphaA + alphaB * V)/(alphaC + exp((alphaD + V / alphaE)))
m_beta = (betaA + betaB * V)/(betaC + exp((betaD + V / betaE)))
minf = m_alpha / (m_alpha + m_beta)
mtau = 1.0 / (m_alpha + m_beta)
dm/dt = (1 / C) * (minf - m) / mtau

In this case, m_alpha, m_beta, minf and mtau are all alias definitions. There is no reason we couldn’t
expand our d𝑚/d𝑡 description out to eliminate these intermediate Alias objects, but the expression would be
very long and difficult to read.

• Accessing intermediate variables: if we would like to communicate a value other than a simple StateVariable
to another ComponentClass. For example, if we have a component representing a neuron, which has an internal
StateVariable, ‘V’, we may be interested in transmitting a current, for example 𝑖 = 𝑔 * (𝐸 − 𝑉).

Name attribute

Each Alias requires a name attribute, which is a valid and uniquely identifies the Alias from all other elements in the
ComponentClass.

4.2.3 Constant

Attribute Type/Format Required
name identifier yes
units Unit.symbol yes

Body format Required
float yes

Constant objects are used to specify physical constants such as the Ideal Gas Constant (i.e. 8.314462175 JK−1mol−1)
or Avogadro’s number (i.e. 6.0221412927×1023mol−1), and to convert unit dimensions between abstract mathemati-
cal quantities.

The use of Constant elements to hold fixed model parameters is strongly discouraged since this breaks the division of
semantic layers (abstraction and user), which is a key feature of NineML (see [sec:scope]).

4.2. Mathematical Expressions 13

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Name attribute

Each Constant requires a name attribute, which should be a valid and uniquely identify the Dimension in current the
scope.

Units attribute

Each Constant requires a units attribute. The units attribute specifies the units of the property and should refer to the
name of a Unit element in the document scope.

Body

Any valid numeric value, including shorthand scientific notation e.g. 1e-5 (1× 10−5).

4.3 Ports

Ports allow components to communicate with each other during a simulation. Ports can either transmit discrete events
or continuous streams of analog data. Events are typically used to transmit and receive spikes between neutron model,
whereas analog ports can be used to model injected current and gap junctions between neuron models.

Ports are divided into sending, EventSendPort and AnalogSendPort, and receiving objects, EventReceivePort, Analo-
gReceivePort and AnalogReducePort. With the exception of AnalogReducePort objects, each receive port must be
connected to exactly one matching (i.e. analog→analog, event→event) send port, where as a send port can be con-
nected any number of receive ports. AnalogReducePort objects can be connected to any number of AnalogSendPort
objects; the values of the connected ports are then “reduced” to a single data stream using the operator provided to the
AnalogReducePort.

4.3.1 AnalogSendPort

Attribute Type/Format Required
name [StateVariable,Alias].name yes
dimension Dimension.name yes

AnalogSendPort objects allow variables from the current component to be published externally so they can be read
by other ComponentClass objects. Each AnalogSendPort can be connected to multiple AnalogReceivePort and Analo-
gReducePort objects.

Name attribute

Each AnalogSendPort requires a name attribute, which should refer to a StateVariable or Alias within the current
ComponentClass.

Dimension attribute

Each AnalogSendPort requires a dimension attribute. This attribute specifies the dimension of the units of the quantity
that is expected to be passed through the AnalogSendPort and should refer to the name of a Dimension element in the
document scope.

14 Chapter 4. Abstraction Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

4.3.2 AnalogReceivePort

Attribute Type/Format Required
name identifier yes
dimension Dimension.name yes

AnalogReceivePorts allow variables that have been published externally to be used within the current component.
Each AnalogReceivePort must be connected to exactly one AnalogSendPort.

Name attribute

Each AnalogReceivePort requires a name attribute, which is a valid and uniquely identifies the AnalogReceivePort
from all other elements in the ComponentClass.

Dimension attribute

Each AnalogReceivePort requires a dimension attribute. This attribute specifies the dimension of the units of the
quantity that is expected to be passed through the AnalogReceivePort and should refer to the name of a Dimension
element in the document scope.

4.3.3 AnalogReducePort

Attribute Type/Format Required
name identifier yes
dimension Dimension.name yes
operator + yes

Reduce ports can receive data from any number of AnalogSendPort objects (including none). An AnalogReducePort
takes an additional operator compared to an AnalogReceivePort, operator, which specifies how the data from multiple
analog send ports should be combined to produce a single value. Currently, the only supported operation is +, which
calculates the sum of the incoming port values.

The motivation for AnalogReducePort is that it allows us to make our ComponentClass definitions more general. For
example, if we are defining a neuron, we would define an AnalogReducePort called InjectedCurrent. This allows us
to write the membrane equation for that neuron as

d𝑉/d𝑡 = (1/𝐶) * 𝐼𝑛𝑗𝑒𝑐𝑡𝑒𝑑𝐶𝑢𝑟𝑟𝑒𝑛𝑡.

Then, when we connect this neuron to synapses, current-clamps, etc, we simply need to connect the send ports con-
taining the currents of these ComponentClass_es to the InjectedCurrent reduce port, without having to change our
original ComponentClass definitions.

Name attribute

Each AnalogReducePort requires a name attribute, which is a valid and uniquely identifies the AnalogReducePort from
all other elements in the ComponentClass.

4.3. Ports 15

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Dimension attribute

Each AnalogReducePort requires a dimension attribute. This attribute specifies the dimension of the units of the quan-
tity that is expected to be communicated through the AnalogReducePort and should refer to the name of a Dimension
element in the document scope.

Operator attribute

Each AnalogReducePort requires an operator attribute. The operator reduces the connected inputs to a single value at
each time point. For example the following port,

<AnalogReducePort name="total_membrane_current" dimension="current" operator="+"/>

will take all of the electrical currents that have been connected to it via AnalogSendPorts and sum them to get the total
current passing through the membrane.

4.3.4 EventSendPort

Attribute Type/Format Required
name identifier yes

An EventSendPort specifies a channel over which events can be transmitted from a component. Each EventSendPort
can be connected any number of EventReceivePort objects.

Name attribute

Each EventSendPort requires a name attribute, which is a valid and uniquely identifies the EventSendPort from all
other elements in the ComponentClass.

4.3.5 EventReceivePort

Attribute Type/Format Required
name identifier yes

An EventReceivePort specifies a channel over which events can be received by a component. Each EventReceivePort
must be connected to exactly one EventSendPort.

Name attribute

Each EventReceivePort requires a name attribute, which is a valid and uniquely identifies the EventReceivePort from
all other elements in the ComponentClass.

4.4 Dynamic Regimes

Dynamics blocks define the dynamic equations of models such as neurons, post-synaptic responses or plasticity of
synaptic weights. In Dynamics blocks, state variables are evolved by one or more sets of ordinary differential equations
(ODE). Each set of equations is called a regime, and only one regime can be active at a particular point in time. The

16 Chapter 4. Abstraction Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

currently active regime can be changed by a transition event, which is represented as a logical expression on the state
variables. When the logical expression evaluates to true, the transition must occur.

[fig:simple_regime_graph] illustrates a hypothetical transition graph for a system with three state variables, 𝑋 , 𝑌 and
𝑍, which transitions between three ODE regimes, regime1, regime2 and regime3. At any time, the model will be in
one and only one of these regimes, and the state variables will evolve according to the ODE of that regime.

Fig. 4.2: The dynamics block for an example component.

4.4.1 Dynamics

Children Multiplicity Required
StateVariable set no
Regime set yes
Alias set no
Constant set no

The Dynamics block represents the internal mechanisms governing the behaviour of the component. These dynamics
are based on ordinary differential equations (ODE) but may contain non-linear transitions between different ODE
regimes. The regime graph (e.g. [fig:simple_regime_graph]) must contain at least one Regime element, and contain

4.4. Dynamic Regimes 17

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

no regime islands. At any given time, a component will be in a single regime, and can change which regime it is in
through transitions.

Note: Alias objects are defined in Dynamics blocks, not Regime blocks. This means that aliases are the same across
all regimes.

4.4.2 StateVariable

Attribute Type/Format Required
name identifier yes
dimension Dimension.name yes

The state of the model is defined by a set of StateVariable objects. The value of a StateVariable can change in two
ways:

• continuously through TimeDerivative elements (in Regime elements), which define how the StateVariable
evolves over time, e.g. 𝑑𝑋/𝑑𝑡 = 1−𝑋 .

• discretely through StateAssignment (in OnCondition or OnEvent transition elements), which make discrete
changes to a StateVariable value, e.g. 𝑋 = 𝑋 + 1.

Name attribute

Each StateVariable requires a name attribute, which is a valid and uniquely identifies the StateVariable from all other
elements in the ComponentClass.

Dimension attribute

Each StateVariable requires a dimension attribute. This attribute specifies the dimension of the units of the quantities
that StateVariable is expected to be initialised and updated with and should refer to the name of a Dimension element
in the document scope.

4.4.3 Regime

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
TimeDerivative set no
OnCondition set no
OnEvent set no

A Regime element represents a system of ODEs in time on StateVariable. As such, Regime defines how the state
variables change (propagate in time) between subsequent transitions.

18 Chapter 4. Abstraction Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Name attribute

Each Regime requires a name attribute, which is a valid and uniquely identifies the Regime from all other elements in
the ComponentClass.

4.4.4 TimeDerivative

Attribute Type/Format Required
variable StateVariable.name yes

Children Multiplicity Required
MathInline singleton yes

TimeDerivative elements contain a mathematical expression for the right-hand side of the ODE

d𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒

d𝑡
= 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

which can contain of references to any combination of StateVariable, Parameter, AnalogReceivePort, AnalogReduce-
Port and Alias elements with the exception of aliases that are derived from RandomDistribution components. There-
fore, only one TimeDerivative element is allowed per StateVariable per Regime. If a TimeDerivative for a StateVariable
is not defined in a Regime, it is assumed to be zero.

Variable attribute

Each TimeDerivative requires a variable attribute. This should refer to the name of a StateVariable in the Component-
Class. Only one TimeDerivative is allowed per variable in each Regime.

4.5 Transitions

The currently active dynamic regime can be changed via transitions. Transitions have instantaneous temporal extent
(i.e. they are event-like). There are two types of transitions, condition-triggered transitions (see OnCondition), which
are evoked when an associated trigger expression becomes true, or event-triggered transitions (see OnEvent), which
are evoked when an associated event port receives an event from an external component. Multiple state assignments
can be defined and multiple events can be sent within a single transition block.

During either type of transition three instantaneous actions can occur:

• The component transitions to a target regime (can be the same as the current regime)

• State variables can be assigned new values (see StateAssignment)

• The component can send events (see OutputEvent).

There is no order defined in transitions; this means that the order of resolution of state assignments can be ambiguous.
If, for example, we have two transitions, T1 and T2, originating from the same Regime, in which T1 contains the state
assignment V=V+1 and T2 contains the assignment V=V*V, and both transitions are triggered simultaneously, then
there is no guarantee about the value of V. It is left to the user to ensure such situations do not occur. Implementations
should emit a warning when they are detected.

4.5. Transitions 19

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

4.5.1 OnCondition

Attribute Type/Format Required
target_regime Regime.name no

Children Multiplicity Required
Trigger singleton yes
StateAssignment set no
OutputEvent set no

OnCondition blocks are activated when the mathematical expression in the Trigger block becomes true. They are
typically used to model spikes in spiking neuron models, potentially emitting spike events and/or transitioning to an
explicit refractory regime.

Target_regime attribute

An OnEvent can have a target_regime attribute, which should refer to the name of a Regime element in the Compo-
nentClass that the dynamics block will transition to when the trigger condition is met. If the target_regime attribute is
omitted the regime will transition to itself.

4.5.2 OnEvent

Attribute Type/Format Required
target_regime Regime.name no
port EventReceivePort.name yes

Children Multiplicity Required
StateAssignment set no
OutputEvent set no

OnEvent blocks are activated when the dynamics component receives an event from an external component on the port
the OnEvent element is “listening” to. They are typically used to model the transient response to spike events from
incoming synaptic connections.

Cascading of events, i.e. events triggering subsequent events, are permitted, which in theory could be recursive through
components depending on their connectivity. It is the user’s responsibility to ensure that infinite recursion does not
occur with zero delay. Implementations may decide to terminate after a given number of recursive cascades of zero
delay (say 1000) to prevent infinite loops, but such limits should be modifiable by the user.

Port attribute

Each OnEvent requires a port attribute. This should refer to the name of an EventReceivePort in the ComponentClass
interface.

20 Chapter 4. Abstraction Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Target_regime attribute

OnEvent can have a targetRegime attribute, which should refer to the name of a Regime element in the Component-
Class that the dynamics block will transition to when the OnEvent block is triggered by an incoming event. If the
targetRegime attribute is omitted the regime will transition to itself.

4.5.3 Trigger

Children Multiplicity Required
MathInline singleton yes

Trigger objects define when an OnCondition transition should occur. The MathInline block of a Trigger can contain
any arbitrary combination of ‘and’, ‘or’ and ‘negation’ logical operations (‘&&’, ‘||’ and ‘!’ respectively) on the result
of pure inequality relational operations (‘>’ and ‘<’), which follow the syntax and semantics of ANSI C89. The
inequality expression may contain references to StateVariable, AnalogReceivePort, AnalogReducePort, Parameter
and Alias elements, with the exception of Alias elements derived from random distributions. The OnCondition block
is triggered when the boolean result of the Trigger statement changes from false to true.

4.5.4 StateAssignment

Attribute Type/Format Required
variable StateVariable.name yes

Children Multiplicity Required
MathInline singleton yes

StateAssignment elements allow discontinuous changes in the value of state variables. Only one state assignment
is allowed per variable per transition block. The assignment expression may contain references to StateVariable,
AnalogReceivePort, AnalogReducePort, Parameter and Alias elements, including Alias elements derived from random
distributions. State assignments are typically used to reset the membrane voltage after an outgoing spike event or
update post-synaptic response states after an incoming spike event.

Variable attribute

Each StateAssignment requires a variable attribute. This should refer to the name of a StateVariable in the Compo-
nentClass. Only one StateAssignment is allow per variable in each OnEvent or OnCondition block.

4.5.5 OutputEvent

Attribute Type/Format Required
port EventSendPort.name yes

OutputEvent elements specify events to be raised during a transition. They are typically used to raise spike events
from within OnCondition elements.

4.5. Transitions 21

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Port attribute

Each OutputEvent requires a port attribute. This should refer to the name of an EventSendPort in the ComponentClass
interface.

4.6 Random Distributions

Values for a property across all elements in a container (e.g. cells in a population, post-synaptic responses, plasticity
rules or delays in a projection) can be defined as a random distribution by a Component within a RandomDistribu-
tion_Value element. A random distribution component must parameterize a ComponentClass with a RandomDistri-
bution block; the component class defines the random distribution family (e.g. normal, cauchy, gamma, etc. . .). As
of version 1.0, the only random distributions available to the user are those defined in the standard library, however,
derived distributions are planned for future versions.

4.6.1 RandomDistribution

Attribute Type/Format Required
standard_library URL yes

The names and parameters of the random distribution in the standard library match the UncertML definitions that can
be found at http://www.uncertml.org/distributions. The subset of the UncertML distributions that should be imple-
mented are by NineML compliant packages are,

• BernoulliDistribution

• BetaDistribution

• BinomialDistribution

• CauchyDistribution

• ChiSquareDistribution

• DirichletDistribution

• ExponentialDistribution

• FDistribution

• GammaDistribution

• GeometricDistribution

• HypergeometricDistribution

• LaplaceDistribution

• LogisticDistribution

• LogNormalDistribution

• MultinomialDistribution

• NegativeBinomialDistribution

• NormalDistribution

• ParetoDistribution

• PoissonDistribution

22 Chapter 4. Abstraction Layer

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://www.uncertml.org/distributions

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

• UniformDistribution

• WeibullDistribution

Note: Note: C implementations of these distributions are available in the GNU Scientific Library, http://www.gnu.
org/software/gsl/

Standard_library attribute

The standard_library attribute is required and should point to a URLin the http://www.uncertml.org/distributions/
directory.

4.7 Network Connectivity

The connection rule for cells in the source and destination populations of a Projection (i.e. the rule that determines
which source cells are connected to which destination cells) is defined by a connection-rule component within the
Connectivity element of the Projection. This component must parameterize a ComponentClass with a ConnectionRule
block, which describes the connection algorithm. As of version 1.0, the only connection rules available to the user are
those defined in the standard library (e.g. all-to-all, one-to-one, probabilistic, etc. . .), however, custom connectivity
rules are planned for future versions.

4.7.1 ConnectionRule

Attribute Type/Format Required
standard_library URL yes

Connection rules must be one of 6 standard library types, all-to-all, one-to-one, probabilistic, explicit, random-fan-out
and random-fan-in, provided to the standard_libarary attribute.

Note: In future versions, built-in connectivity rules are to be replaced with mathematically expressed connection
rules.

Standard_library attribute

The standard_library attribute is required and should point to the URLin the
http://nineml.net/9ML/1.0/connectionrules/directory that corresponds to the desired connection rule.

All cells in the source population are connected to all cells in the destination population.

Each cell in the source population is connected to the cell in the destination population with the corresponding index.
Note that this requires that the source and destination populations be the same size.

All cells in the source population are connected to cells in the destination population with a probability defined by a
parameter, which should be named probability. The properties supplied to the probability parameter should either be
a SingleValue representing the probability of a connection between all source and destination cell pairs, or a Array-
Value or ExternalArrayValue of size 𝑀×𝑁 , where 𝑀 and 𝑁 are the size of the source and destination populations
respectively. For array probabilities, the data in the ArrayValue or ExternalArrayValue are ordered by the indices

𝑖prob = 𝑖source *𝑁dest + 𝑖dest

4.7. Network Connectivity 23

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://www.uncertml.org/distributions/
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://nineml.net/9ML/1.0/-connectionrules/

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

where 𝑖prob, 𝑖source and 𝑖dest are the indices of the probability entry, and the source and destination cells respectively,
and 𝑁dest is the size of the destination population.

Cells in the source population are connected to cells in the destination population as specified by an explicit arrays.
The source and destination are defined via parameters, which should be named sourceIndicies and destinationIndicies
parameters respectively.

The properties supplied to the sourceIndicies parameter should be a ArrayValue or ExternalArrayValue drawn from
the set {1, . . . ,𝑀} where 𝑀 is the size of the source population and be the same length as the property supplied to
the target-indices parameter.

The properties supplied to the destinationIndicies parameter should be a ArrayValue or ExternalArrayValue drawn
from the set {1, . . . , 𝑁} where 𝑁 is the size of the source population and be the same length as the property supplied
to the source-indices parameter.

Each cell in the source population is connected to a fixed number of randomly selected cells in the destination pop-
ulation. The number of cells is specified by the parameter number. The property supplied to the number parameter
should be a SingleValue.

Each cell in the destination population is connected to a fixed number of randomly selected cells in the source pop-
ulation. The number of cells is specified by the parameter number. The property supplied to the number parameter
should be a SingleValue.

24 Chapter 4. Abstraction Layer

CHAPTER 5

User Layer

5.1 Components and Properties

5.1.1 Component

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
[Definition,Prototype] singleton yes
Property set no

Component elements instantiate Abstraction Layer component classes by providing properties for each of the param-
eters defined the class. Each Component is linked to a ComponentClass class by a Definition element, which locates
the component class. A Component that instantiates a ComponentClass directly must supply matching Property el-
ements for each Parameter in the ComponentClass. Alternatively, a Component can inherit a ComponentClass and
set of Property elements from an existing component by substituting the Definition for a Prototype element, which
locates the reference Component. In this case, only the properties that differ from the reference component need to be
specified.

Name attribute

Each Component requires a name attribute, which should be a valid and uniquely identify the Component from all
other elements in the document scope.

25

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.1.2 Definition

Attribute Type/Format Required
url URL no

Body format Required
ComponentClass.name yes

The Definition element establishes a link between a User Layer component and Abstraction Layer ComponentClass.
This ComponentClass can be located either in the current document or in another file if a url attribute is provided.

Url attribute

If the ComponentClass referenced by the definition element is defined outside the current document, the url attribute
specifies a URLfor the file which contains the ComponentClass definition. If the url attribute is omitted the Compo-
nentClass is referenced from the current document.

Body

The name of the ComponentClass to be referenced ComponentClass needs to be provided in the body of the Definition
element.

5.1.3 Prototype

Attribute Type/Format Required
url URL no

Body format Required
Component.name yes

The Prototype element establishes a link to an existing User Layer Component, which defines the ComponentClass
and default properties of the Component. The reference Component can be located either in the current document or
in another file if a url attribute is provided.

Url attribute

If the prototype Component is defined outside the current file, the URL attribute specifies a URLfor the file which con-
tains the prototype Component. If the url attribute is omitted the Component is referenced from the current document.

Body

The name of the Component to be referenced Component needs to be provided in the body of the Prototype element.

26 Chapter 5. User Layer

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Uniform_resource_locator

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.1.4 Property

Attribute Type/Format Required
name Parameter.name yes
units Unit.symbol yes

Children Multiplicity Required
[SingleValue,ArrayValue,ExternalArrayValue,RandomDistributionValue] singleton yes

Property elements provide values for the parameters defined in the ComponentClass of the Component. Their name
attribute should match the name of the corresponding Parameter element in the ComponentClass. The Property should
be provided units that match the dimensionality of the corresponding Parameter definition.

Name attribute

Each Property requires a name attribute. This should refer to the name of a Parameter in the corresponding Compo-
nentClass of the Component.

Units attribute

Each Property element requires a units attribute. The units attribute specifies the units of the quantity and should refer
to the name of a Unit element in the document scope. For a dimensionless units a Unit with no SI dimensions can be
used. The SI dimensions of the Unit should match the SI dimensions of the corresponding Parameter.

Note: “Dimensionless” parameters can be defined by referring to an empty Dimension object, i.e. one without any
power or offset attributes

5.1.5 Reference

Attribute Type/Format Required
url URL no

Body format Required
*.name yes

Reference elements are used to locate User Layer elements in the document scope of the current separate documents.
In most cases, User Layer elements (with the exception of Population elements supplied to Projection) can be specified
inline, i.e. within the element they are required. However, it is often convenient to define a component in the document
scope as this allows it to be reused at different places within the model. The url attribute can be used to reference a
component in a separate document, potentially one published online in a public repository (e.g. ModelDB or Open
Source Brain).

Url attribute

The url attribute specifies a URLfor the file which contains the User Layer element to be referenced. If the url attribute
is omitted the element is referenced from the current document.

5.1. Components and Properties 27

http://en.wikipedia.org/wiki/Uniform_resource_locator
http://senselab.med.yale.edu/modeldb/ListByModelName.asp?c=19&lin=-1
http://www.opensourcebrain.org/
http://www.opensourcebrain.org/
http://en.wikipedia.org/wiki/Uniform_resource_locator

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Body

The name of the User Layer element to be referenced should be included in the body of the Reference element.

5.2 Values

In NineML, “values” are arrays that implicitly grow to fill the size of the container (i.e. Population or Projection) they
are located within. Values can be one of four types

• SingleValue, a consistent value across the container

• ArrayValue, an explicit array defined in NineML

• ExternalArrayValue, an explicit array defined in text (space delimited) or HDF5 format.

• RandomDistributionValue, an array of values derived from a random distribution.

5.2.1 SingleValue

Body format Required
integer yes

A SingleValue element represents an array filled with a single value.

Body

Any valid numeric value in ANSI C89, including shorthand scientific notation e.g. 1e-5 (1× 10−5).

5.2.2 ArrayValue

Children Multiplicity Required
ArrayValueRow set no

ArrayValue elements are used to represent an explicit array of values. ArrayValue elements contain a set of Array-
Value_Row elements (i.e. unordered, since they are explicitly ordered by their index attribute) in hierarchical data
formats (see Serialization). Since is significantly slower to parse than plain text and binary formats it is not recom-
mended to use ArrayValue for large arrays, preferring ExternalArrayValue instead.

5.2.3 ArrayValueRow

Attribute Type/Format Required
index integer yes

Body format Required
integer yes

ArrayValue_Row elements represent the numerical values of the explicit ArrayValue element.

28 Chapter 5. User Layer

http://en.wikipedia.org/wiki/ANSI_C

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Index attribute

The index attribute specifies the index of the ArrayValue_Row in the ArrayValue. It must be non-negative, unique
amongst the set of ArrayValue_Row.index in the list, and the set of indices must be contiguous for a single ArrayValue.

Body

Any valid numeric value in ANSI C89, including shorthand scientific notation e.g. 1e-5 (1× 10−5).

Note: The order of ArrayValue_Row elements within an ArrayValue element does not effect the interpreted order of
the values in the array in keeping with the order non-specific design philosophy of NineML.

5.2.4 ExternalArrayValue

Attribute Type/Format Required
url URL yes
mimeType MIME type yes
columnName Data column name in external file yes

ExternalArrayValue elements are used to explicitly define large arrays of values. The array data are not stored within
the hierarchical data format but more efficient text or binary HDF5 (http://www.hdfgroup.org/HDF5/) formats. As of
version 1.0, the data in the external files are stored as dense float or integer arrays. However, sparse-array formats are
planned for future versions.

The columnName attribute of the ExternalArrayValue elements allows multiple arrays of equal length (and therefore
typically relating to the same container) to be stored in the same external file.

Url attribute

The url attribute specifies the URLof the external data file.

MimeType attribute

The mimetype attribute specifies the data format for the external value list in the MIME type syntax. Currently,
only two formats are supported application/vnd.nineml.valuelist.text and application/vnd.
nineml.valuelist.hdf5.

• application/vnd.nineml.externalvaluearray.text - an ASCII text file with a single row of
white-space separated column names, followed by arbitrarily many white-space separated data rows of numeric
values. Each numeric value is associated with the column name corresponding to the same index the along the
row. Therefore, the number of items in each row must be the same.

• application/vnd.nineml.externalvaluearray.hdf5 - a HDF5 data file containing a single
level of named members of array->float or array->int type.

ColumnName attribute

Each ExternalArrayValue must have a columnName attribute, which refers to a column header in the external data file.

5.2. Values 29

http://en.wikipedia.org/wiki/ANSI_C
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Internet_media_type
http://www.hdfgroup.org/HDF5/
http://en.wikipedia.org/wiki/Uniform_resource_locator
http://en.wikipedia.org/wiki/Internet_media_type
http://www.hdfgroup.org/HDF5/

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.2.5 RandomDistributionValue

Children Multiplicity Required
[Component,Reference] singleton yes

RandomDistributionValue elements represent arrays of values drawn from random distributions, which are defined by
a Component elements. The size of the generated array is determined by the size of the container (i.e. Population or
Projection) the RandomDistributionValue is nested within.

5.3 Populations

5.3.1 Population

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
Size singleton yes
Cell singleton yes

A Population defines a set of dynamic components of the same class. The size of the set is specified by the Size
element. The properties of the dynamic components are generated from value types, which can be constant across the
population, randomly distributed or individually specified (see Values).

Name attribute

Each Population requires a name attribute, which should be a valid and uniquely identify the Population from all other
elements in the document scope.

5.3.2 Cell

Children Multiplicity Required
[Component,Reference] singleton yes

The Cell element specifies the dynamic components that will make up the population. The Component can be defined
inline or via a Reference element.

5.3.3 Size

Body format Required
int yes

The number of cells in the population is specified by the integer provided in the body of the Size element. In future
versions this may be extended to allow the size of a population to be derived from other features of the Population.

30 Chapter 5. User Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Body

The text of the Size element contains an integer representing the size of the population.

5.4 Projections

Projections define the synaptic connectivity between two populations, the post-synaptic response of the connections,
the plasticity rules that modulate the post-synaptic response and the transmission delays. Synaptic and plasticity
dynamic components are created if the connection rule determines there is a connection between a particular source
and destination cell pair. The synaptic and plasticity components are then connected to and from explicitly defined
ports of the cell components in the source and projection populations

SingleValue and RandomDistributionValue elements used in properties of a projection (in the Connectivity, Response,
Plasticity and Delay elements) take the size of the number of connections made. Explicitly array values, ArrayValue
and ExternalArrayValue, are only permitted with connection rules (as defined by the Connectivity element) where the
number of connections is predetermined (i.e. one-to-one, all-to-all and explicit). Explicit arrays are ordered by the
indices

𝑖value = 𝑖source *𝑁dest + 𝑖dest

where 𝑖value, 𝑖source and 𝑖dest are the indices of the array entry, and the source and destination cells respectively, and
𝑁dest is the size of the destination population. Value indices that do not correspond to connected pairs are omitted,
and therefore the arrays are the same size as the number of connections.

5.4.1 Projection

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
Source singleton yes
Destination singleton yes
Connectivity singleton yes
Response singleton yes
Plasticity singleton no
Delay singleton yes

The Projection element contains all the elements that define a projection between two populations and should be
uniquely identified in the scope of the document.

Name attribute

Each Projection requires a name attribute, which should be a valid and uniquely identify the Projection from all other
elements in the document scope.

5.4. Projections 31

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.4.2 Connectivity

Children Multiplicity Required
Component singleton yes

Each Connectivity element contains a Component, which defines the connection pattern of the cells in the source
population to cells in the destination population (i.e. binary ‘connected’ or ‘not connected’ decisions). For each
connection that is specified, a synapse, consisting of a post-synaptic response and plasticity dynamic components, is
created to model the synaptic interaction between the cells.

5.4.3 Source

Children Multiplicity Required
[Component,Reference] singleton yes
FromDestination set no
FromPlasticity set no
FromResponse set no

The Source element specifies the pre-synaptic population or selection (see Selection) of the projection and all the port
connections it receives. The source population is specified via a Reference element since it should not be defined within
the Projection. The source population can receive incoming port connections from the post-synaptic response (see
FromResponse), the plasticity rule (see FromPlasticity) or the post-synaptic population directly (see FromDestination).
Connections with these ports are only made if the Connectivity_determines that the source and destination cells should
be connected.

5.4.4 Destination

Children Multiplicity Required
[Component,Reference] singleton yes
FromSource set no
FromPlasticity set no
FromResponse set no

The Destination element specifies the post-synaptic or selection (see Selection) population of the projection and all
the port connections it receives. The destination population is specified via a Reference element since it should not be
defined within the Projection. The source population can receive incoming port connections from the post-synaptic
response (see FromResponse), the plasticity rule (see FromPlasticity) or the pre-synaptic population directly (see From-
Source). Connections with these ports are only made if the Connectivity_determines that the source and destination
cells should be connected.

5.4.5 Response

Children Multiplicity Required
[Component,Reference] singleton yes
FromSource set no
FromDestination set no
FromPlasticity set no

32 Chapter 5. User Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

The Response defines the effect on the post-synaptic cell dynamics of an incoming synaptic input. The additional
dynamics are defined by a Component element, which can be defined inline or referenced. For static connections
(i.e. those without a Plasticity element), the magnitude of the response (i.e. synaptic weight) is typically passed as a
property of the Response element.

The post-synaptic response dynamics can receive incoming port connections from the plasticity rule (see FromPlastic-
ity) or the pre or post synaptic populations (see FromSource and FromDestination). The post-synaptic response object
is implicitly created and connected to these ports if the Connectivity_determines that the source and destination cells
should be connected.

5.4.6 Plasticity

Children Multiplicity Required
[Component,Reference] singleton yes
FromSource set no
FromDestination set no
FromResponse set no

The Plasticity element describes the dynamic processes that modulate the dynamics of the post-synaptic response,
typically the magnitude of the response (see Response). If the synapse is not plastic the Plasticity element can be
omitted.

The plasticity dynamics can receive incoming port connections from the post-synaptic response rule (see FromRe-
sponse) or the pre or post synaptic populations (see FromSource and FromDestination). The plasticity object is im-
plicitly created and connected to these ports if the Connectivity_determines that the source and destination cells should
be connected.

5.4.7 FromSource

Attribute Type/Format Required
sender [AnalogSendPort,EventSendPort].name yes
receiver [AnalogReceivePort,EventReceivePort,AnalogReducePort].name yes

The FromSource element specifies a port connection to the projection component (either the destination cell, post-
synaptic response or plasticity dynamics) inside which it is inserted from the source cell dynamics.

Sender attribute

Each FromSource element requires a sender attribute. This should refer to the name of a AnalogSendPort or EventSend-
Port in the Cell_of the source population. The transmission mode of the port (i.e. analog or event) should match that
of the port referenced by the receiver attribute.

Receiver attribute

Each FromSource element requires a receiver attribute. This should refer to the name of a AnalogReceivePort, Even-
tReceivePort or AnalogReducePort in the Component in the enclosing Source/Destination/Plasticity/Response ele-
ment. The transmission mode of the port (i.e. analog or event) should match that of the port referenced by the sender
attribute.

5.4. Projections 33

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.4.8 FromDestination

Attribute Type/Format Required
sender [AnalogSendPort,EventSendPort].name yes
receiver [AnalogReceivePort,EventReceivePort,AnalogReducePort].name yes

The FromDestination element specifies a port connection to the projection component (either the source cell, post-
synaptic response or plasticity dynamics) inside which it is inserted from the destination cell dynamics.

Sender attribute

Each FromDestination element requires a sender attribute. This should refer to the name of a AnalogSendPort or
EventSendPort in the Cell_of the source population. The transmission mode of the port (i.e. analog or event) should
match that of the port referenced by the receiver attribute.

Receiver attribute

Each FromDestination element requires a receiver attribute. This should refer to the name of a AnalogReceivePort,
EventReceivePort or AnalogReducePort in the Component in the enclosing Source/Destination/Plasticity/Response
element. The transmission mode of the port (i.e. analog or event) should match that of the port referenced by the
sender attribute.

5.4.9 FromPlasticity

Attribute Type/Format Required
sender [AnalogSendPort,EventSendPort].name yes
receiver [AnalogReceivePort,EventReceivePort,AnalogReducePort].name yes

The FromPlasticity element specifies a port connection to the projection component (either the source cell, destination
cell or post-synaptic response dynamics) inside which it is inserted from the plasticity dynamics.

Sender attribute

Each FromPlasticity element requires a sender attribute. This should refer to the name of a AnalogSendPort or
EventSendPort in the Cell->Component_ of the source population. The transmission mode of the port (i.e. analog
or event) should match that of the port referenced by the receiver attribute.

Receiver attribute

Each FromPlasticity element requires a receiver attribute. This should refer to the name of a AnalogReceivePort,
EventReceivePort or AnalogReducePort in the Component in the enclosing Source/Destination/ Plasticity/Response
element. The transmission mode of the port (i.e. analog or event) should match that of the port referenced by the
sender attribute.

34 Chapter 5. User Layer

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.4.10 FromResponse

Attribute Type/Format Required
sender [AnalogSendPort,EventSendPort].name yes
receiver [AnalogReceivePort,EventReceivePort,AnalogReducePort].name yes

The FromResponse element specifies a port connection to the projection component (either the source cell, destination
cell or plasticity dynamics) inside which it is inserted from the post-synaptic response dynamics.

Sender attribute

Each FromResponse element requires a sender attribute. This should refer to the name of a AnalogSendPort or
EventSendPort in the Cell->Component_ of the source population. The transmission mode of the port (i.e. analog
or event) should match that of the port referenced by the receiver attribute.

Receiver attribute

Each FromResponse element requires a receiver attribute. This should refer to the name of a AnalogReceivePort,
EventReceivePort or AnalogReducePort in the Component in the enclosing Source/Destination/ Plasticity/Response
element. The transmission mode of the port (i.e. analog or event) should match that of the port referenced by the
sender attribute.

5.4.11 Delay

Attribute Type/Format Required
units Unit.symbol yes

Children Multiplicity Required
[SingleValue,ArrayValue,ExternalArrayValue,RandomDistributionValue] singleton yes

In version 1.0, the Delay element specifies the delay between the pre-synaptic cell port and both the Plasticity_and Re-
sponse. In future versions, it is planned to include the delay directly into the port-connection objects (i.e. FromSource,
FromDestination, etc. . .) to allow finer control of the delay between the different components.

Units attribute

The units attribute specifies the units of the delay and should refer to the name of a Unit element in the document
scope. The units should be temporal, i.e. have 𝑡 = 1 and all other SI dimensions set to 0.

5.5 Selections: combining populations and subsets

Selections are designed to allow sub and super-sets of cell populations to be projected to/from other populations (or
selections thereof). In version 1.0, the only supported operation is the concatenation of multiple populations into
super-sets but in future versions it is planned to provide “slicing” operations to select sub sets of populations.

5.5. Selections: combining populations and subsets 35

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

5.5.1 Selection

Attribute Type/Format Required
name identifier yes

Children Multiplicity Required
Concatenate singleton yes

The Selection element contains the operations that are used to select the cells to add to the selection.

Name attribute

Each Selection requires a name attribute, which should be a valid and uniquely identify the Selection from all other
elements in the document scope.

5.5.2 Concatenate

Children Multiplicity Required
Item set yes

The Concatenate element is used to add populations to a selection. It contains a set of Item elements which reference
the Population elements to be concatenated. The order of the Item elements does not effect the order of the concate-
nation, which is determined by the index attribute of the Item elements. The set of Item_@index attributes must be
non-negative, contiguous, not contain any duplicates and contain the index 0 (i.e. 𝑖 = 0, . . . , 𝑁 − 1).

5.5.3 Item

Attribute Type/Format Required
index integer yes

Children Multiplicity Required
Reference([Population,Selection]) singleton yes

Each Item element references as a Population or Selection element and specifies their order in the concatenation.

Index attribute

Each Item requires a index attribute. This attribute specifies the order in which the Populations in the Selection are
concatenated and thereby the indices of the cells within the combined Selection.

Note: This preserves the order non-specific nature of elements in NineML

36 Chapter 5. User Layer

CHAPTER 6

Serialization

There are four officially supported data formats for serializing NineML: XML, JSON, YAML, and HDF5 (although it
is possible to use other data formats). When referenced from another NineML document, the format of a NineML file
is recognised by the extension of its filename, i.e:

Format Extension
XML .xml
JSON .json
YAML .yml
HDF5 .h5

Note: Tools that plan to support NineML only need to support one data format since the officially supported NineML
Python Library can be used to convert between the data formats listed above.

NineML is intended to be an abstract object model that is independent of the choice of hierarchical data format used to
serialize it. However, some aspects of NineML were designed with XML in mind and there are some subtle differences
between hierarchical data formats that prevent general mappings from XML. Therefore, in order to map the NineML
object model onto non-XML data formats some additional conventions are required.

Several features of XML that are used in the NineML specification and are not present in JSON/YAML (JSON and
YAML are equivalent representations), and/or HDF5 are:

Namespaces (xmlns): There is no concept of namespaces in JSON/YAML or HDF5, which are used in NineML to
distinguish the document version and annotations.

Attributes: In JSON/YAML there is no concept of attributes. This does not pose a problem if a given NineML
type does not have body text as attributes can be treated as separate children. However, for NineML types that
do, such as Constant and Definition, both the body text and attributes can’t be represented without additional
conventions.

Sets of child elements: While there are list structures in JSON/YAML, which can be used to represent arbitrarily
sized sets of child elements (e.g. parameters, properties, regimes), HDF5 does not have an equivalent structure
for storing sets of objects of the same type.

37

http://www.w3.org/XML/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://www.w3.org/XML/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://github.com/INCF/nineml-python
http://github.com/INCF/nineml-python
http://www.json.org/
http://yaml.org
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://www.json.org/
http://yaml.org
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Fortunately, JSON, YAML and HDF5 all permit arbitrary strings as field names, whereas element/attribute names in
XML must start with an alphabetic character. Therefore we can use non alphanumeric characters, in this case the ‘@’
symbol, to escape the following special fields.

@namespace: Holds the namespace of the element as the special attribute xmlns does in XML.

@body: Used to differentiate body text from other attributes in JSON/YAML and HDF5 iff there are other attributes
(Datasets could technically be used as body elements in HDF5 but they are designed to hold array data not single
values). Note that for JSON/YAML and HDF5 if the serial form of an element only contains body text (e.g.
MathInline) then this is “flattened” to be the sole value of the element.

@multiple: A HDF_ group that has a @multiple attribute equal to ‘true’, contains multiple child elements of the
given NineML type, which are stored as sub-groups named by arbitrary integer indices. Note that this is not
strictly required for elements in the NineML specification (although it simplifies code to read them), where the
multiplicity of children of a given type is defined, but is for parsing arbitrary object hierarchies in annotations.

Note: Future versions of NineML will be designed to minimise the need for the the @body field within the NineML
object model. However, it will still be required to represent arbitrary annotations and language extensions designed in
XML.

ArrayValues should also be stored within native data array structures of the format (e.g. HDF5 datasets) instead of
within ArrayValueRow elements.

The following model of a Izhikevich neuron uses both shows an example of how namespaces and body elements are
represented natively in XML.

<?xml version='1.0' encoding='UTF-8'?>
<NineML xmlns="http://nineml.net/9ML/1.0">
<ComponentClass name="Izhikevich">
<Parameter name="C_m" dimension="capacitance"/>
<Parameter name="a" dimension="per_time"/>
<Parameter name="alpha" dimension="per_time_voltage"/>
<Parameter name="b" dimension="per_time"/>
<Parameter name="beta" dimension="per_time"/>
<Parameter name="c" dimension="voltage"/>
<Parameter name="d" dimension="voltage_per_time"/>
<Parameter name="theta" dimension="voltage"/>
<Parameter name="zeta" dimension="voltage_per_time"/>
<AnalogReducePort name="Isyn" dimension="current" operator="+"/>
<EventSendPort name="spike"/>
<AnalogSendPort name="V" dimension="voltage"/>
<Dynamics>

<StateVariable name="U" dimension="voltage_per_time"/>
<StateVariable name="V" dimension="voltage"/>
<Regime name="subthreshold_regime">
<TimeDerivative variable="U">

<MathInline>a*(-U + V*b)</MathInline>
</TimeDerivative>
<TimeDerivative variable="V">
<MathInline>-U + V*beta + alpha*(V*V) + zeta + Isyn/C_m</MathInline>

</TimeDerivative>
<OnCondition target_regime="subthreshold_regime">
<Trigger>
<MathInline>V > theta</MathInline>

</Trigger>
<StateAssignment variable="U">
<MathInline>U + d</MathInline>

</StateAssignment>

38 Chapter 6. Serialization

http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://www.w3.org/XML/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://www.json.org/
http://yaml.org
http://www.hdfgroup.org/HDF5/
http://www.w3.org/XML/
http://www.hdfgroup.org/HDF5/
http://www.w3.org/XML/

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

<StateAssignment variable="V">
<MathInline>c</MathInline>

</StateAssignment>
<OutputEvent port="spike"/>

</OnCondition>
</Regime>

</Dynamics>
<Annotations>

<Validation xmlns="http://github.com/INCF/nineml-python" dimensionality="True"/>
</Annotations>

</ComponentClass>
<Component name="SampleIzhikevich">
<Definition url="./izhikevich.xml">Izhikevich</Definition>
<Property name="C_m" units="pF">

<SingleValue>1.0</SingleValue>
</Property>
<Property name="a" units="per_ms">

<SingleValue>0.2</SingleValue>
</Property>
<Property name="alpha" units="per_mV_ms">
<SingleValue>0.04</SingleValue>

</Property>
<Property name="b" units="per_ms">

<SingleValue>0.025</SingleValue>
</Property>
<Property name="beta" units="per_ms">

<SingleValue>5.0</SingleValue>
</Property>
<Property name="c" units="mV">

<SingleValue>-75.0</SingleValue>
</Property>
<Property name="d" units="mV_per_ms">
<SingleValue>0.2</SingleValue>

</Property>
<Property name="theta" units="mV">

<SingleValue>-50.0</SingleValue>
</Property>
<Property name="zeta" units="mV_per_ms">

<SingleValue>140.0</SingleValue>
</Property>
<Initial name="U" units="mV_per_ms">
<SingleValue>-1.625</SingleValue>

</Initial>
<Initial name="V" units="mV">
<SingleValue>-70.0</SingleValue>

</Initial>
</Component>
<Dimension name="capacitance" m="-1" l="-2" t="4" i="2"/>
<Dimension name="current" i="1"/>
<Unit symbol="mV" dimension="voltage" power="-3"/>
<Unit symbol="mV_per_ms" dimension="voltage_per_time" power="0"/>
<Unit symbol="pF" dimension="capacitance" power="-12"/>
<Unit symbol="per_mV_ms" dimension="per_time_voltage" power="6"/>
<Unit symbol="per_ms" dimension="per_time" power="3"/>
<Dimension name="per_time" t="-1"/>
<Dimension name="per_time_voltage" m="-1" l="-2" t="2" i="1"/>
<Dimension name="voltage" m="1" l="2" t="-3" i="-1"/>
<Dimension name="voltage_per_time" m="1" l="2" t="-4" i="-1"/>

39

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

</NineML>

whereas in YAML the @namespace and @body fields must be used in place of the xmlns attribute and body text.

NineML:
'@namespace': http://nineml.net/9ML/1.0
ComponentClass:
- name: Izhikevich

Parameter:
- {name: C_m, dimension: capacitance}
- {name: a, dimension: per_time}
- {name: alpha, dimension: per_time_voltage}
- {name: b, dimension: per_time}
- {name: beta, dimension: per_time}
- {name: c, dimension: voltage}
- {name: d, dimension: voltage_per_time}
- {name: theta, dimension: voltage}
- {name: zeta, dimension: voltage_per_time}
AnalogReducePort:
- {name: Isyn, dimension: current, operator: +}
EventSendPort:
- {name: spike}
AnalogSendPort:
- {name: V, dimension: voltage}
Dynamics:

StateVariable:
- {name: U, dimension: voltage_per_time}
- {name: V, dimension: voltage}
Regime:
- name: subthreshold_regime
TimeDerivative:
- {MathInline: a*(-U + V*b), variable: U}
- {MathInline: -U + V*beta + alpha*(V*V) + zeta + Isyn/C_m, variable: V}
OnCondition:
- Trigger: {MathInline: V > theta}
target_regime: subthreshold_regime
StateAssignment:
- {MathInline: U + d, variable: U}
- {MathInline: c, variable: V}
OutputEvent:
- {port: spike}

Annotations:
Validation:
- {'@namespace': 'http://github.com/INCF/nineml-python', dimensionality: 'True

→˓'}
Component:
- Definition: {'@body': Izhikevich, url="./izhikevich.yml"}

name: SampleIzhikevich
Property:
- {name: C_m, SingleValue: 1.0, units: pF}
- {name: a, SingleValue: 0.2, units: per_ms}
- {name: alpha, SingleValue: 0.04, units: per_mV_ms}
- {name: b, SingleValue: 0.025, units: per_ms}
- {name: beta, SingleValue: 5.0, units: per_ms}
- {name: c, SingleValue: -75.0, units: mV}
- {name: d, SingleValue: 0.2, units: mV_per_ms}
- {name: theta, SingleValue: -50.0, units: mV}
- {name: zeta, SingleValue: 140.0, units: mV_per_ms}

40 Chapter 6. Serialization

http://yaml.org

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Initial:
- {name: U, SingleValue: -1.625, units: mV_per_ms}
- {name: V, SingleValue: -70.0, units: mV}

Dimension:
- {name: capacitance, m: -1, l: -2, t: 4, i: 2}
- {name: current, i: 1}
- {name: per_time, t: -1}
- {name: per_time_voltage, m: -1, l: -2, t: 2, i: 1}
- {name: voltage, m: 1, l: 2, t: -3, i: -1}
- {name: voltage_per_time, m: 1, l: 2, t: -4, i: -1}
Unit:
- {symbol: mV, dimension: voltage, power: -3}
- {symbol: mV_per_ms, dimension: voltage_per_time, power: 0}
- {symbol: pF, dimension: capacitance, power: -12}
- {symbol: per_mV_ms, dimension: per_time_voltage, power: 6}
- {symbol: per_ms, dimension: per_time, power: 3}

Example representation of sets of Parameter elements in HDF5 format:

/NineML/ComponentClass/Parameter/@multiple = true
/NineML/ComponentClass/Parameter/0/name = 'C_m'
/NineML/ComponentClass/Parameter/0/dimension = 'capacitance'
/NineML/ComponentClass/Parameter/1/name = 'a'
/NineML/ComponentClass/Parameter/1/dimension = 'per_time'
...

41

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

42 Chapter 6. Serialization

CHAPTER 7

Examples

7.1 Single Cell Models

7.1.1 Izhikevich Model

In this first example, we are describing how to represent the Izhikevich model in NineML [Izhikevich2003]. The model
is composed of single ComponentClass, containing a single Regime, subthresholdRegime, and two state variables, 𝑈
& 𝑉 .

The ODEs defined for the Regime are:

𝑑𝑉

𝑑𝑡
= 0.04 * 𝑉 * 𝑉 + 5 * 𝑉 + 140.0− 𝑈 + 𝑖synapse + 𝑖injected

𝑑𝑈

𝑑𝑡
= 𝑎 * (𝑏 * 𝑉 − 𝑈)

The ComponentClass has a single OnCondition transition, is triggered when 𝑉 > 𝑡ℎ𝑒𝑡𝑎. When triggered, It causes an
Event called spikeOutput to be emitted, and two StateAssignments to be made:

𝑈 ← 𝑈 + 𝑑

𝑉 ← 𝑐

The target-regime of the OnCondition transition is not declared explicitly in the XML, implying that the target-regime
is the same as the source-regime, i.e. subthresholdRegime.

The RegimeGraph is shown in Figure [fig:EX1_RegimeGraph]

Using this Abstraction Layer definition, as well as suitable parameters from the user layer; 𝑎 = 0.02, 𝑏 = 0.2, 𝑐 =
−65, 𝑑 = 8, 𝑖injected = 5.0, we can simulate this, giving output as shown in Figure [fig:Ex1_Output].

In Figure [fig:Ex1_Output], we can see the value of the StateVariable 𝑉 over time. We can also see that when the
value of 𝑉 > 𝑡ℎ𝑒𝑡𝑎 triggers the condition, we emit a spike, and the StateAssignment of 𝑉 ← 𝑐 resets the value of 𝑉 .
The corresponding Abstraction Layer description for this model is:

43

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

subthresholdRegime

dU/dt = a*(b*V - U)

dV/dt = 0.04*V*V + 5*V + 140.0 - U + iSyn + iinj_constant

Transition

@ OnCondition(V > theta)

Assign: V <= c

Assign: U <= U+d

Emit Event: spikeOutput

Fig. 7.1: RegimeGraph for the XML model in this section.

NineML:
'@namespace': http://nineml.net/9ML/1.0
ComponentClass:
- name: Izhikevich
Parameter:
- {name: a, dimension: per_time}
- {name: b, dimension: per_voltage}
- {name: c, dimension: voltage}
- {name: d, dimension: dimensionless}
- {name: iInj, dimension: current}
- {name: theta, dimension: voltage}
AnalogReducePort:
- {name: iSyn, dimension: current, operator: +}
EventSendPort:
- {name: spikeOutput}
AnalogSendPort:
- {name: V, dimension: voltage}
Dynamics:

StateVariable:
- {name: U, dimension: dimensionless}
- {name: V, dimension: voltage}
Regime:
- name: subthresholdRegime

TimeDerivative:
- {variable: U, MathInline: a*(-U + V*b)}
- {variable: V, MathInline: (5*V + 0.04*(V*V)/unitV + unitR*(iInj + iSyn)

+ unitV*(-U + 140.0))/unitT}

44 Chapter 7. Examples

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

OnCondition:
- Trigger: {MathInline: V > theta}
target_regime: subthresholdRegime
StateAssignment:
- {variable: U, MathInline: U + d}
- {variable: V, MathInline: c}
OutputEvent:
- {port: spikeOutput}

Constant:
- {name: unitR, units: Ohm, '@body': 1.0}
- {name: unitT, units: s, '@body': 1.0}
- {name: unitV, units: V, '@body': 1.0}

Dimension:
- {name: dimensionless}
- {name: per_time, t: -1}
- {name: per_voltage, m: -1, l: -2, t: 3, i: 1}
- {name: voltage, m: 1, l: 2, t: -3, i: -1}
- {symbol: Ohm, dimension: resistance, power: 0}
- {symbol: V, dimension: voltage, power: 0}
- {symbol: s, dimension: time, power: 1}

User Layer description for the above example is:

NineML:
'@namespace': http://nineml.net/9ML/1.0
ComponentClass:
- name: IzhikevichProperties
Definition: {'@body': Izhikevich}
Property:
- {name: a, SingleValue: 0.02, units: per_s}
- {name: b, SingleValue: 0.2, units: per_V}
- {name: c, SingleValue: -65.0, units: mV}
- {name: d, SingleValue: 8.0, units: unitless}
- {name: iInj, SingleValue: 10.0, units: nA}
- {name: theta, SingleValue: 50.0, units: mV}

Unit:
- {symbol: mV, dimension: voltage, power: -3}
- {symbol: per_V, dimension: per_voltage, power: 0}
- {symbol: per_s, dimension: per_time, power: 0}
- {symbol: unitless, dimension: dimensionless, power: 0}
Dimension:
- {name: dimensionless}
- {name: per_time, t: -1}
- {name: per_voltage, m: -1, l: -2, t: 3, i: 1}
- {name: voltage, m: 1, l: 2, t: -3, i: -1}

Here, we show the simulation results of this XML representation with an initial V=-60mV and U=0.

7.1.2 Leaky Integrate and Fire model

In this example, we build a representation of a integrate-and-fire neuron, with an attached input synapse [Abbott1999].
We have a single StateVariable, iaf_V. This time, the neuron has an absolute refractory period; which is implemented
by using 2 regimes. RegularRegime & RefractoryRegime In RegularRegime, the neuron voltage evolves as:

𝑑(𝑖𝑎𝑓_𝑉)

𝑑𝑡
=

𝑖𝑎𝑓_𝑔𝑙 * (𝑖𝑎𝑓_𝑣𝑟𝑒𝑠𝑡− 𝑖𝑎𝑓_𝑉) + 𝑖𝑎𝑓_𝐼𝑆𝑦𝑛+ 𝑐𝑜𝑏𝑎𝐸𝑥𝑐𝑖𝑡_𝐼
𝑖𝑎𝑓_𝑐𝑚

7.1. Single Cell Models 45

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Events: 'spikeOutput' x

theta

x x x x x x x x x

Fig. 7.2: Result of simulating of the XML model in this section

In RefractoryRegime, the neuron voltage does not change in response to any input:

𝑑(𝑖𝑎𝑓_𝑉)

𝑑𝑡
= 0

In both Regimes, the synapses dynamics evolve as:

𝑑(𝑐𝑜𝑏𝑎𝐸𝑥𝑐𝑖𝑡_𝑔)
𝑑𝑡

= − 𝑐𝑜𝑏𝑎𝐸𝑥𝑐𝑖𝑡_𝑔
𝑐𝑜𝑏𝑎𝐸𝑥𝑐𝑖𝑡_𝑡𝑎𝑢

The neuron has two EventPorts, iaf_spikeoutput is a send port, which sends events when the neuron fires, and cobaEx-
cit_spikeinput is a recv port, which tells the attached synapse that it should ‘fire’. The neuron has 4 transitions, 2
OnEvent transitions and 2 OnCondition transitions. Two of the Transitions are triggered by cobaExcit_spikeinput
events, which cause the conductance of the synapse to increase by an amount 𝑞, These happen in both Regimes. The
other OnConditions:

• One is triggered the voltage being above threshold, which moves the component from RegularRegime to Re-
fractoryRegime, sets V to the reset-voltage also emits a spike

• The other is triggered by enough time having passed for the component to come out of the RefractoryRegime
and move back to the RegularRegime

The corresponding Regime Graph is shown in Figure 5.

The resulting description for the Abstraction Layer is:

NineML:
'@namespace': http://nineml.net/9ML/1.0
ComponentClass:
- name: IafCoba

46 Chapter 7. Examples

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Regime3

diaf_V/dt = (iaf_gl*(iaf_vrest - iaf_V) + iaf_ISyn+cobaExcit_I)/(iaf_cm)

dcobaExcit_g/dt = -cobaExcit_g/cobaExcit_tau

Transition

@ OnEvent(cobaExcit_spikeinput)

Assign: cobaExcit_g <= cobaExcit_g+cobaExcit_q

Regime4

diaf_V/dt = 0

dcobaExcit_g/dt = -cobaExcit_g/cobaExcit_tau

Transition

@ OnCondition(iaf_V > iaf_vthresh)

Assign: iaf_tspike <= t

Assign: iaf_V <= iaf_vreset

Emit Event: iaf_spikeoutput

Transition

@ OnCondition(t >= iaf_tspike + iaf_taurefrac)

Transition

@ OnEvent(cobaExcit_spikeinput)

Assign: cobaExcit_g <= cobaExcit_g+cobaExcit_q

Fig. 7.3: RegimeGraph for the XML model in this section

Parameter:
- {name: cobaExcit_q, dimension: conductanceDensity}
- {name: cobaExcit_tau, dimension: time}
- {name: cobaExcit_vrev, dimension: voltage}
- {name: iaf_cm, dimension: capacitance}
- {name: iaf_gl, dimension: conductanceDensity}
- {name: iaf_taurefrac, dimension: time}
- {name: iaf_vreset, dimension: voltage}
- {name: iaf_vrest, dimension: voltage}
- {name: iaf_vthresh, dimension: voltage}
EventReceivePort:
- {name: cobaExcit_spikeinput}
AnalogReducePort:
- {name: iaf_ISyn, dimension: current, operator: +}
EventSendPort:
- {name: iaf_spikeoutput}
AnalogSendPort:
- {name: cobaExcit_I, dimension: current}
- {name: iaf_V, dimension: voltage}
Dynamics:

StateVariable:
- {name: cobaExcit_g, dimension: conductanceDensity}
- {name: iaf_V, dimension: voltage}
- {name: iaf_tspike, dimension: time}
Regime:
- name: RefractoryRegime
TimeDerivative:
- {variable: cobaExcit_g, MathInline: -cobaExcit_g/cobaExcit_tau}
OnEvent:
- port: cobaExcit_spikeinput
target_regime: RefractoryRegime
StateAssignment:
- {variable: cobaExcit_g, MathInline: cobaExcit_g + cobaExcit_q}

OnCondition:
- Trigger: {MathInline: t > iaf_taurefrac + iaf_tspike}

target_regime: RegularRegime
- name: RegularRegime
TimeDerivative:
- {variable: cobaExcit_g, MathInline: -cobaExcit_g/cobaExcit_tau}
- {variable: iaf_V, MathInline: (cobaExcit_I + iaf_ISyn + iaf_gl*(-iaf_V +

iaf_vrest))/iaf_cm}
OnEvent:
- port: cobaExcit_spikeinput
target_regime: RegularRegime

7.1. Single Cell Models 47

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

StateAssignment:
- {variable: cobaExcit_g, MathInline: cobaExcit_g + cobaExcit_q}

OnCondition:
- Trigger: {MathInline: iaf_V > iaf_vthresh}

target_regime: RefractoryRegime
StateAssignment:
- {variable: iaf_V, MathInline: iaf_vreset}
- {variable: iaf_tspike, MathInline: t}
OutputEvent:
- {port: iaf_spikeoutput}

Alias:
- {MathInline: cobaExcit_g*(cobaExcit_vrev - iaf_V), name: cobaExcit_I}

Dimension:
- {name: capacitance, m: -1, l: -2, t: 4, i: 2}
- {name: conductanceDensity, m: -1, l: -2, t: 3, i: 2}
- {name: time, t: 1}
- {name: voltage, m: 1, l: 2, t: -3, i: -1}

The User Layer description for the above example is:

NineML:
'@namespace': http://nineml.net/9ML/1.0
Component:
name: IaFCobaProperties
Definition: {'@body': IafCoba}
Property:
- {name: cobaExcit_q, SingleValue: 1.0, units: uF_per_cm2}
- {name: cobaExcit_tau, SingleValue: 2.0, units: ms}
- {name: cobaExcit_vrev, SingleValue: 0.0, units: mV}
- {name: iaf_cm, SingleValue: 0.02, units: nF}
- {name: iaf_gl, SingleValue: 0.1, units: mS}
- {name: iaf_taurefrac, SingleValue: 3.0, units: ms}
- {name: iaf_vreset, SingleValue: -70.0, units: mV}
- {name: iaf_vrest, SingleValue: -60.0, units: mV}
- {name: iaf_vthresh, SingleValue: 20.0, units: mV}

Unit:
- {symbol: mS, dimension: conductanceDensity, power: -3}
- {symbol: mV, dimension: voltage, power: -3}
- {symbol: ms, dimension: time, power: -3}
- {symbol: nF, dimension: capacitance, power: -9}
Dimension:
- {name: capacitance, m: -1, l: -2, t: 4, i: 2}
- {name: conductanceDensity, m: -1, l: -2, t: 3, i: 2}
- {name: time, t: 1}
- {name: voltage, m: 1, l: 2, t: -3, i: -1}

The simulation results is presented in Figure 6.

7.2 Network Models

7.2.1 COBA IAF Network example

This example is an implementation of Benchmark 1 from [Brette2009], which consists of a network of an excitatory
and inhibitory IAF populations randomly connected with COBA synapses [Vogels2005]. The excitatory and inhibitory
Population elements are created with 3,200 and 800 cells respectively. Both populations are then concatenated into a

48 Chapter 7. Examples

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

60

55

50

45

40

35

ia
f_

V

0 50 100 150 200 250

R
e
g

im
e
4

R
e
g

im
e
3

R
e
g

im
e

t [ms]

cobaExcit_spikeinput
(recv)

iaf_spikeout
(send)

x x x x x x x x xx x x xx x x

xx

t0 t2

iaf_vthresh

t1 t3

Fig. 7.4: Result of simulating of the XML model in this section. cobaExcit_spikeinput is fed events from an external
Poisson generator in this simulation

single Selection element, “AllNeurons”, which is used to randomly connect both populations to every other neuron in
the network with a 2% probability.

The abstraction layer description of the IAF input neuron ComponentClass is:

NineML:
'@namespace': http://nineml.net/9ML/1.0
ComponentClass:
- name: IaF
Parameter:
- {name: iaf_cm, dimension: capacitance}
- {name: iaf_gl, dimension: conductanceDensity}
- {name: iaf_taurefrac, dimension: time}
- {name: iaf_vreset, dimension: voltage}
- {name: iaf_vrest, dimension: voltage}
- {name: iaf_vthresh, dimension: voltage}
AnalogReducePort:
- {name: iaf_ISyn, dimension: current, operator: +}
EventSendPort:
- {name: iaf_spikeoutput}
AnalogSendPort:
- {name: iaf_V, dimension: voltage}
Dynamics:
StateVariable:
- {name: iaf_V, dimension: voltage}
- {name: iaf_tspike, dimension: time}
Regime:
- name: RefractoryRegime

OnCondition:
- Trigger: {MathInline: t > iaf_taurefrac + iaf_tspike}

target_regime: RegularRegime

7.2. Network Models 49

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

- name: RegularRegime
TimeDerivative:
- {variable: iaf_V, MathInline: (iaf_ISyn + iaf_gl*(-iaf_V + iaf_vrest))/iaf_cm}
OnCondition:
- Trigger: {MathInline: iaf_V > iaf_vthresh}

target_regime: RefractoryRegime
StateAssignment:
- {variable: iaf_V, MathInline: iaf_vreset}
- {variable: iaf_tspike, MathInline: t}
OutputEvent:
- {port: iaf_spikeoutput}

The description of the COBA ComponentClass is:

NineML:
'@namespace': http://nineml.net/9ML/1.0
ComponentClass:
- name: CoBa
Parameter:
- {name: coba_q, dimension: conductanceDensity}
- {name: coba_tau, dimension: time}
- {name: coba_vrev, dimension: voltage}
EventReceivePort:
- {name: coba_spikeinput}
AnalogReceivePort:
- {name: iaf_V, dimension: voltage}
AnalogSendPort:
- {name: coba_I, dimension: current}
Dynamics:

StateVariable:
- {name: coba_g, dimension: conductanceDensity}
Regime:
- name: RegularRegime

TimeDerivative:
- {variable: coba_g, MathInline: -coba_g/coba_tau}
OnEvent:
- port: coba_spikeinput
target_regime: RegularRegime
StateAssignment:
- {variable: coba_g, MathInline: coba_g + coba_q}

Alias:
- {MathInline: coba_g*(coba_vrev - iaf_V), name: coba_I}

The connection probability component class:

NineML:
'@namespace': http://nineml.net/9ML/1.0
- name: Probabilistic
Parameter:
- {name: probability, dimension: dimensionless}
ConnectionRule: {standard_library: 'http://nineml.net/9ML/1.0/connectionrules/

→˓Probabilistic'}

Note: More complex connection rules are planned for NineML v2.0

The cell Component are parameterized and connected together in the User Layer via Population, Selection and Pro-

50 Chapter 7. Examples

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

jection elements:

NineML:
'@namespace': http://nineml.net/9ML/1.0
Component:
- name: ExcConnectProb
Definition: {'@body': Probabilistic}
Property:
- {name: probability, SingleValue: 0.02, units: unitless}

- name: IaFProperties
Definition: {'@body': IaF}
Property:
- {name: iaf_cm, SingleValue: 0.2, units: nF}
- {name: iaf_gl, SingleValue: 0.05, units: mS}
- {name: iaf_taurefrac, SingleValue: 5.0, units: ms}
- {name: iaf_vreset, SingleValue: -60.0, units: mV}
- {name: iaf_vrest, SingleValue: -60.0, units: mV}
- {name: iaf_vthresh, SingleValue: -50.0, units: mV}

- name: IaFSynapseExcitatory
Definition: {'@body': CoBa}
Property:
- {name: coba_q, SingleValue: 0.004, units: uF_per_cm2}
- {name: coba_tau, SingleValue: 5.0, units: ms}
- {name: coba_vrev, SingleValue: 0.0, units: mV}

- name: IaFSynapseInhibitory
Definition: {'@body': CoBa}
Property:
- {name: coba_q, SingleValue: 0.051, units: uF_per_cm2}
- {name: coba_tau, SingleValue: 5.0, units: ms}
- {name: coba_vrev, SingleValue: -80.0, units: mV}

- name: InhConnectProb
Definition: {'@body': Probabilistic}
Property:
- {name: probability, SingleValue: 0.02, units: unitless}

Population:
- name: Excitatory
Cell:

Reference: {'@body': IaFProperties}
Size: 3200

- name: Inhibitory
Cell:

Reference: {'@body': IaFProperties}
Size: 800

Selection:
- name: AllNeurons
Concatenate:

Item:
- index: 0

Reference: {'@body': Excitatory}
- index: 1

Reference: {'@body': Inhibitory}
Projection:
- name: Excitation
Source:

Reference: {'@body': Excitatory}
Destination:

Reference: {'@body': AllNeurons}
FromResponse:
- {send_port: coba_I, receive_port: iaf_ISyn}

7.2. Network Models 51

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

Connectivity:
Reference: {'@body': ExcConnectProb}

Response:
Reference: {'@body': IaFSynapseExcitatory}
FromSource:
- {send_port: iaf_spikeoutput, receive_port: coba_spikeinput}

Delay: {SingleValue: 1.5, units: ms}
- name: Inhibition
Source:

Reference: {'@body': Inhibitory}
Destination:

Reference: {'@body': AllNeurons}
FromResponse:
- {send_port: coba_I, receive_port: iaf_ISyn}

Connectivity:
Reference: {'@body': InhConnectProb}

Response:
Reference: {'@body': IaFSynapseInhibitory}
FromSource:
- {send_port: iaf_spikeoutput, receive_port: coba_spikeinput}

Delay: {SingleValue: 1.5, units: ms}
Unit:
- {symbol: mS, dimension: conductanceDensity, power: -3}
- {symbol: mV, dimension: voltage, power: -3}
- {symbol: nF, dimension: capacitance, power: -9}
- {symbol: unitless, dimension: dimensionless, power: 0}
Dimension:
- {name: capacitance, m: -1, l: -2, t: 4, i: 2}
- {name: conductanceDensity, m: -1, l: -2, t: 3, i: 2}
- {name: dimensionless}
- {name: time, t: 1}
- {name: voltage, m: 1, l: 2, t: -3, i: -1}

52 Chapter 7. Examples

CHAPTER 8

Acknowledgments

We would like to thank the former INCF NineML Task Force members for their contributions to the text and the
concepts presented in this document. In particular: A. Gorchetchnikov, M. Hull, Y. Le Franc, P. Gleeson, E. Muller,
R. Cannon, Birgit Kriener, Subhasis Ray and S. Hill.

Former NineML INCF Task Force members

• Robert Cannon

• Robert Clewley

• Alex Cope

• Hugo Cornelis

• Andrew P. Davison

• Erik De Schutter

• Mikael Djurfeldt

• Damien Drix

• Hans Ekkehard Plesser

• Padraig Gleeson

• Anatoli Gorchetchnikov

• Valentin Haenel

• Sean Hill

• Michael Hull

• Birgit Kriener

• Yann Le Franc

• Chung-Chua Lo

• Abigail Morrison

53

Network Interchange for Neuroscience Modeling Language (NineML) version 1.1, Release 1

• Eilif Muller

• Dragan Nikolic

• Ivan Raikov

• Subhasis Ray

• Raphael Ritz

• Malin Sandström

• Lars Schwabe

54 Chapter 8. Acknowledgments

Bibliography

[Davison2008] Davison, A.~P., Br”{u}derle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., Perrinet, L., and
Yger, P. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Frontiers in neuroinformatics,
2(January):11.

[Gleeson2010] Gleeson, P., Crook, S., Cannon, R.~C., Hines, M.~L., Billings, G.~O., Farinella, M., Morse, T.~M.,
Davison, A.~P., Ray, S., Bhalla, U.~S., Barnes, S.~R., Dimitrova, Y.~D., and Silver, R.~A. (2010). Neuroml: A
language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS
Comput Biol, 6(6).

[Goddard2001] Goddard, N. and Hucka, M. (2001). Towards NeuroML: model description methods for collab-
orative modelling in neuroscience. Philosophical Transactions of the Royal Society B: Biological Sciences,
356(1412):1209–28.

[Cannon2014] Cannon, R.~C., Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., and Silver, R.~A. (2014).
LEMS: a language for expressing complex biological models in concise and hierarchical form and its use in
underpinning NeuroML 2. Frontiers in neuroinformatics, 8(September):79.

[Abbott1999] Abbott, L.~F. (1999). Lapicque’s introduction of the integrate-and-fire model neuron (1907)}. Brain
Research Bulletin, 50(99):303–304.

[Brette2009] Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., James, M., Diesmann, M., Morrison, A.,
Goodman, P.~H., Jr, F. C.~H., Zirpe, M., Natschl”{a}ger, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner,
A., Rochel, O., Vieville, T., Muller, E., Davison, A.~P., El, S., and Destexhe, A. (2009). Simulation of networks
of spiking neurons: A review of tools and strategies. Journal of computational neuroscience, 23(3):349–398.

[Izhikevich2003] Izhikevich, E.~M. and Izhikevich, E.~M. (2003). Simple model of spiking neurons. IEEE Transac-
tions on Neural Networks, 14(6):1569–72.

[Vogels2005] Vogels, T.~P. and Abbott, L.~F. (2005). Signal Propagation and Logic Gating in Networks of Integrate-
and-Fire Neurons. The Journal of Neuroscience, 25(46):10786 –10795.

55

	About
	NineML Committee
	Licence
	Website

	Introduction
	Scope
	Design considerations
	Identifiers

	General Elements
	Document Layout
	Units and Dimensions
	Annotating Elements

	Abstraction Layer
	Component Classes and Parameters
	Mathematical Expressions
	Ports
	Dynamic Regimes
	Transitions
	Random Distributions
	Network Connectivity

	User Layer
	Components and Properties
	Values
	Populations
	Projections
	Selections: combining populations and subsets

	Serialization
	Examples
	Single Cell Models
	Network Models

	Acknowledgments
	Bibliography

